Sains Malaysiana 54(1)(2025): 151-164

http://doi.org/10.17576/jsm-2025-5401-12

 

Biological Control of Aspergillus flavus with Pseudozyma hubeiensis Yeast from Nutmeg (Myristica fragrans Houtt.)

(Kawalan Biologi Aspergillus flavus dengan Yis Pseudozyma hubeiensis daripada Buah Pala (Myristica fragrans Houtt.))

 

DWI N SUSILOWATI1, CAHYANI HASNA DESWANTI2, NANI RADIASTUTI2, SRI RAHAJOENINGSIH1, YADI SURYADI1,*, SUPRIADI3, NURUL HIDAYAH3, SRI WIDAWATI4 & NINIK SETYOWATI5

 

1Research Centre for Horticulture-National Research and Innovation Agency, Jl. Raya Jakarta-Bogor km 46, Cibinong Bogor 16915, West Java Indonesia
2Dept. of Biology, Fac. of Science and Technology - Syarif Hidayatullah Islamic University Jakarta, Indonesia
3Research Centre for Estate Crops- National Research and Innovation Agency, Jl Raya Jakarta-Bogor Km46, Cibinong Bogor 16915, West Java Indonesia
4Research Centre for Applied Microbiology- National Research and Innovation Agency, Jl Raya Jakarta-Bogor Km46, Cibinong Bogor 16915, West Java Indonesia
5Research Centre for Applied Botany - National Research and Innovation Agency, Jl Raya Jakarta-Bogor Km46, Cibinong Bogor 16915, West Java Indonesia

 

Diserahkan: 11 Mac 2024/Diterima: 28 Oktober 2024

 

Abstract

Yeasts are potential biocontrol agents for Aspergillus flavus, an aflatoxin-producing fungus that is present in various agricultural products, including nutmeg. This study aimed to obtain yeast isolates from nutmeg (seeds, pulps, and leaves), characterise them, and identify their antagonistic effects on A. flavus. The antagonistic activities toward A. flavus were determined by a dual-culture method. Moreover, the possible mechanism responsible for these antagonistic effects was also analysed. The results showed that 51 yeast isolates were successfully isolated from nutmeg. The inhibition percentages of 47.25 ± 1.66% (isolate DP 1341a) and 55.98 ± 1.31% (isolate DP 1342) were statistically significant (p < 0.05). The antagonistic mechanisms of the DP 1341a isolate were associated with the production of volatile organic compounds (32.79 ± 1.01%), a chitinolytic index (2.51 ± 0.55), and hyperparasitism but not toxin activity. Moreover, the DP 1342 isolate produced volatile organic compounds (54.33 ± 3.13%), exhibited toxin activity (2.74 ± 0.22) and exhibited hyperparasitism but did not exhibit chitinase activity. Molecular identification showed that the two yeast isolates (DP 1341a and DP 1342) were identified as Pseudozyma hubeiensis with sequence similarity > 99%. Therefore, the selected yeast isolates, P. hubeiensis DP 1341a and DP 1342, could be further developed as biological control agents for A. flavus. This finding will also be useful for improving biological control agents as an eco-friendly and economically viable disease management strategy.

 

Keywords: Antagonist: Aspergillus flavus; Myristica fragrans; Pseudozyma hubeiensis; yeasts

 

Abstrak

Yis merupakan agen kawalan bio yang berpotensi untuk Aspergillus flavus, iaitu sejenis kulat penghasil aflatoksin, yang hadir dalam pelbagai produk pertanian termasuk buah pala. Kajian ini bertujuan untuk memperoleh pencilan yis daripada buah pala (biji, pulpa dan daun), dan kemudian mencirikan serta mengenal pasti aktiviti antagonis terhadap A. flavus. Aktiviti antagonis terhadap A. flavus ditentukan dengan kaedah dwi-kultur. Selain itu, mekanisme yang mungkin bertanggungjawab bagi kesan antagonis juga dianalisis. Hasil kajian menunjukkan 51 pencilan yis berjaya dipencilkan daripada buah pala. Peratusan perencatan sebanyak 47.25 ± 1.66% (pencilan DP 1341a) dan 55.98 ± 1.31% (pencilan DP 1342) adalah signifikan secara statistik (p < 0.05). Mekanisme antagonis pencilan DP 1341a dikaitkan dengan pengeluaran sebatian organik meruap (32.79 ± 1.01%), indeks kitinolitik (2.51 ± 0.55), hiperparasitisme, tetapi tidak menghasilkan aktiviti toksin. Manakala, pencilan DP 1342 menghasilkan sebatian organik meruap (54.33 ± 3.13%), menunjukkan aktiviti toksin (2.74 ± 0.22) dan hiperparasit, tetapi tidak menunjukkan aktiviti kitinase. Pencirian molekul menunjukkan bahawa kedua-dua pencilan yis tersebut (DP 1341a dan DP 1342) telah dikenal pasti sebagai Pseudozyma hubeiensis dengan persamaan jujukan > 99%. Oleh itu, pencilan yis P. hubeiensis DP 1341a dan DP 1342 yang terpilih boleh dibangunkan sebagai agen kawalan biologi bagi A. flavus. Penemuan ini juga berguna untuk penambahbaikan agen kawalan biologi sebagai strategi pengurusan penyakit yang mesra alam dan berdaya maju dari segi ekonomi.

 

Kata kunci: Antagonis; Aspergillus flavus; Myristica fragrans; Pseudozyma hubeiensis; yis

 

RUJUKAN

Abdel‐Kareem, M.M., Rasmey, A.M. & Zohri, A.A. 2019. The action mechanism and biocontrol potentiality of novel isolates of Saccharomyces cerevisiae against the aflatoxigenic Aspergillus flavus. Letters in Applied Microbiology 68(2): 104-111.

Aiyama, R., Trivittayasil, V. & Tsuta, M. 2018. Discrimination of aflatoxin contamination level in nutmeg by fluorescence fingerprint measurement. Food Control 85: 113-118.

Akocak, P.B., Churey, J.J. & Worobo, R.W. 2015. Antagonistic effect of chitinolytic Pseudomonas and Bacillus on the growth of fungal hyphae and spores of aflatoxigenic Aspergillus flavus. Food Bioscience 10(1): 48-58.

Allen, T.W., Burpee, L.L. & Buck, J.W. 2004. In vitro attachment of phylloplane yeasts to Botrytis cinerea, Rhizoctonia solani, and Sclerotinia homoeocarpa. Canadian Journal of Microbiology 50(12): 1041-1048.

Avis, T.J. & Bélanger, R.R. 2002. Mechanisms and means of detection of biocontrol activity of Pseudozyma yeasts against plant-pathogenic fungi. FEMS Yeast Research 2(1): 5-8.

Belda, I., Ruiz, J., Alonso, A., Marquina, D. & Santos, A. 2017. The biology of Pichia membranifaciens killer toxins. Toxins 9(4): 112.

Campagnollo, F.B., Mousavi, K.A., Borges, L.L., Bonato, M.A., Fakhri, Y., Barbalho, C.B., Barbalho, R.L., Corassin, C.H. & Oliveira, C.A. 2020. In vitro and in vivo capacity of yeast-based products to bind to aflatoxins B1 and M1 in media and foodstuffs: A systematic review and meta-analysis. Food Research International 137: 109505.

Cao, Z., Xia, W., Zhang, X., Yuan, H., Guan, D. & Gao, L. 2020. Hepatotoxicity of nutmeg: A pilot study based on metabolomics. Biomedicine and Pharmacotherapy 131: 110780.

Citanirmala, N.M.V., Rahayu, W.P. & Hariyadi, R.W. 2016. Kajian penerapan peraturan Menteri Pertanian Nomor 53 Tahun 2012 untuk pengendalian aflatoksin pada pala. Jurnal Mutu Pangan: Indonesian Journal of Food Quality 3(1): 58-64.

Choińska, R., Piasecka-Jóźwiak, K., Chabłowska, B., Dumka, J. & Łukaszewicz, A. 2020. Biocontrol ability and volatile organic compounds production as a putative mode of action of yeast strains isolated from organic grapes and rye grains. Antonie van Leeuwenhoek 113(8): 1135-1146.

Contarino, R., Brighina, S., Fallico, B., Cirvilleri, G., Parafati, L. & Restuccia, C. 2019. Volatile organic compounds (VOCs) are produced by biocontrol yeasts. Food Microbiology 82: 70-74.

Dennis, C. & Webster, J. 1971. Antagonistic properties of species-groups of Trichoderma. II production of volatile antibiotics. Transactions of the British Mycological Society 57(1): 41-48.

Dharmaputra, O.S., Ambarwati, S., Retnowati, I. & Nurfadila, N. 2015. Fungal infection and aflatoxin contamination in stored nutmeg (Myristica fragrans) kernels at various stages of delivery chain in North Sulawesi Province. Biotropia 22(2): 129-139.

Dhaslin, Y.F., Issac, R. & Prabha, M.L. 2019. Antioxidant, antimicrobial, and health benefits of nutmeg. Drug Invention Today 12(1): 167-169.

Directorate General of Plantations. 2021. Statistical of National Leading Estate Crops Commodity 2019-2021, edited by Gartina, D. & Sukriya, R.L. pp. 1011.

Dorner, J.W. 2004. Biological control of aflatoxin contamination of crops. Journal of Toxicology - Toxin Reviews 23(2-3): 425-450.

Farag, M.A., Mohsen, E. & Abd El Nasser, G. 2018. Sensory metabolites profiling in Myristica fragrans (nutmeg) organs and in response to roasting as analysed via chemometric tools. LWT 97: 684-692.

Farbo, M.G., Urgeghe, P.P., Fiori, S., Marcello, A., Oggiano, S., Balmas, V., Hassan, Z.U., Jaoua, S. & Migheli, Q. 2018. Effect of yeast volatile organic compounds on ochratoxin A-producing Aspergillus carbonarius and A. ochraceus. International Journal of Food Microbiology 284: 1-10.

Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4): 783-791.

Freimstreakr, F.M., Rueda-Mejia, M.P., Tilocca, B. & Migheli, Q. 2019. Biocontrol yeasts: Mechanisms and applications. World Journal Microbiology and Biotechnology 35(10): 1-19.

Golubev, W.I., Pfeiffer, I. & Golubeva, E.W. 2006. Mycocin production in Pseudozyma tsukubaensis, Mycopathologia 162(4): 313-316.

Gupta, R., Azhar, M. & Kalam, M.A. 2020. An overview of Myristica fragrans (nutmeg) - its benefits and adverse effects to humans. Indian Journal of Ayurveda and Integrative Medicine 2(4): 45-50.

Hartati, S., Wiyono, S., Hidayat, S.H. & Sinaga, M.S. 2023. Potency and mechanism of yeast-like fungus Pseudozyma in controlling anthracnose on chili. Agrosainstek 7(1): 8-16.

Hyun, S.H., Lee, J.G., Park, W.J., Kim, H.K. & Lee, J.S. 2014. Isolation and diversity of yeasts from fruits and flowers of orchard in Sinam-Myeon of Yesan-Gun, Chungcheongnam-do, Korea. The Korean Journal of Mycology 42(1): 21-27.

Ibrahim, M.A., Cantrell, C.L., Jeliazkova, E.A., Astatkie, T. & Zheljazkov, V.D. 2020. Utilization of nutmeg (Myristica fragrans Houtt.) seed hydrodistillation time to produce essential oil fractions with varied compositions and pharmacological effects. Molecules 25(3): 565.

Jaibangyang, S., Nasanit, R. & Limtong, S. 2021. Effects of temperature and relative humidity on Aflatoxin B1 reduction in corn grains and antagonistic activities against Aflatoxin-producing Aspergillus flavus by a volatile organic compound-producing yeast, Kwoniella heveanensis DMKU-CE82. BioControl 66(3): 433-443.

Jaibangyang, S., Nasanit, R. & Limtong, S. 2020. Biological control of aflatoxin-producing Aspergillus flavus by volatile organic compound-producing antagonistic yeasts. BioControl 65(3): 377-386.

Johnson, J.S., Spakowicz, D.J., Hong, B.Y., Petersen, L.M., Demkowicz, P., Chen, L., Leopold, S.R., Hanson, B.M., Agresta, H.O., Gerstein, M., Sodergren, E. & Weinstock, G.M. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nature Communications 10(1): 5029.

Joubert, P.M. & Doty, S.L. 2018. Endophytic yeasts: Biology, ecology and applications. In Endophytes of Forest Trees. Forestry Sciences, edited by Pirttilä, A. & Frank, A. Springer: Cham.

Kim, S., Lee, H., Lee, S., Lee, J., Ha, J., Choi, Y., Yoon, Y. & Choi, K.H. 2017. Microbe-mediated aflatoxin decontamination of dairy products and feeds. Journal of Dairy Science 100(2): 871-880.

Khunnamwong, P., Lertwattanasakul, N., Jindamorakot, S., Suwannarach, N., Matsui, K. & Limtong, S. 2020. Evaluation of antagonistic activity and mechanisms of endophytic yeasts against pathogenic fungi causing economic crop diseases. Folia Microbiologica 65(3): 573-590.

Konsue, W., Dethoup, T. & Limtong, S. 2020. Biological control of fruit rot and anthracnose of postharvest mango by antagonistic yeasts from economic crops leaves. Microorganisms 8(3): 317.

Kurtzman, C.P., Fell, J.W. &. Boekhout, T. 2011. The Yeasts: A Taxonomic Study. Volume 2. 5th ed. San Diego: Elsevier. p. 516.

Lima, S.L., Colombo, A.L. & de Almeida Jr., J.N. 2019. Fungal cell wall: Emerging antifungals and drug resistance. Frontiers in Microbiology 10: 2573.

Ling, L., Tu, Y., Ma, W., Feng, S., Yang, C., Zhao, Y., Wang, N., Li, Z., Lu, L. & Zhang, J. 2020. A potentially important resource: Endophytic yeasts. World Journal of Microbiology and Biotechnology 36(8): 110.

Liu, G.L., Chi, Z., Wang, G.Y., Wang, Z.P., Li, Y. & Chi, Z.M. 2015. Yeast killer toxins, molecular mechanisms of their action, and their applications. Critical Reviews in Biotechnology 35(2): 222-234.

Mannazzu, I., Domizio, P., Carboni, G., Zara, S., Zara, G., Comitini, F., Budroni, M. & Ciani, M. 2019. Yeast killer toxins: From ecological significance to application. Critical Review in Biotechnology 39(5): 603-617.

Maryati, D.A. & Ferniah, R.S. 2021. Molecular and phylogenetic analysis of inulinase-producing yeast isolated from nira siwalan (Borassus flabellifer) based on ITS sequences. Journal of Physics: Conference Series 1943(1): 012060.

Mimee, B., Labbe, C. & Bélanger, R.R. 2009. Catabolism of flocculosin, an antimicrobial metabolite produced by Pseudozyma flocculosa. Glycobiology 19(9): 995-1001.

Montesinos, E. & Bonaterra, A. 2009. Microbial Pesticides. In Encyclopedia of Microbiology, 3rd ed., edited by Schaechter, M. Amsterdam: Elsevier. pp. 110-120.

Moradi, M., Rohani, M., Fani, S.R., Mosavian, M.T.H., Probst, C. & Khodaygan, P. 2020. Biocontrol potential of native yeast strains against Aspergillus flavus and aflatoxin production in pistachio. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment 37(11): 1963-1973.

Nesci, A.V., Bluma, R.V. & Etcheverry, M.G. 2005. In vitro selection of maize rhizobacteria to study potential biological control of Aspergillus section Flavi and aflatoxin production. European Journal of Plant Pathology 113(2): 159-171.

Palumbo, J.D., Baker, J.L. & Mahoney, N.E. 2006. Isolation of bacterial antagonists of Aspergillus flavus from almonds. Microbial Ecology 52(1): 45-52.

Parafati, L., Vitale, A., Restuccia, C. & Cirvilleri, G. 2015. Biocontrol ability and action mechanism of food-isolated yeast strains against Botrytis cinerea causing postharvest bunch rot of table grape. Food Microbiology 47: 85-92.

Pesireron, M., Kaihatu, S., Suneth, R. & Ayal, Y. 2019. Perbaikan teknik pengendalian hama dan penyakit perkebunan pala Banda (Myristica fragrans Houtt.) di Maluku. Jurnal Penelitian Tanaman Industri 25(1): 45-57.

Rahardiyan, D., Poluakan, M. & Moko, E.M. 2020. Physico-chemical properties of nutmeg (Myristica fragrans Houtt) of North Sulawesi nutmeg.  Fullerene Journal Chemistry 5(1): 23-31.

Safitri, D., Wiyono, S. & Soekarno, B.P.W. 2021. Mode of action of the endophytic yeast Rhodotorula mucilaginosa in controlling basal stem rot caused by Phytophthora capsici. IOP Conference Series: Earth and Environmental Science 667(1): 012050.

Saitou, N. & Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425.

Santos, A., Sanchez, A. & Marquira, D. 2004. Yeast as biological agent to control Botrytis cinerae. Microbiological Research 159(4): 331-339.

Sembiring, B. 2020. Reducing aflatoxin contamination of nutmeg using drying methods. IOP Conference Series: Earth and Environmental Science 418(1): 012030.

Sofiana, I., Susilowati, D.N. & Putra, I.P. 2020. The potential of endophytic fungi as biocontrol and phosphate solubilization agent in Capsicum anuum. Fungal Territory 3(3): 16-19.

Sukmawati, D., Andrianto, M.H., Arman, Z., Ratnaningtyas, N.I., Al Husna, S.N., El-Enshasy, H.A., Dailin, D. & Kenawy, A.A. 2020. Antagonistic activity of phylloplane yeasts from Moringa oleifera Lam. leaves against Aspergillus flavus UNJCC F-30 from chicken feed. Indian Phytopathology 73(1): 79-88.

Susilowati, D.N., Rahayuningsih, S., Sofiana, I. & Radiastuti, N. 2021. The potential of nutmeg’s microbes (Myristica fragrans Houtt.) as antagonistic agents against Rigidoporus microporus. Journal of Suboptimal Lands 50(1): 1-13.

Suvarna, S., Dsouza, J., Ragavan, M.L. & Das, N. 2018. Potential probiotic characterization and effect of encapsulation of probiotic yeast strains on survival in simulated gastrointestinal tract condition. Food Science and Biotechnology 27(3): 745-753.

Spadaro, D. & Droby, S. 2016. Development of biocontrol products for postharvest diseases of fruit: The importance of elucidating the mechanisms of action of yeast antagonists. Trends in Food Science and Technology 47(1): 39-49.

Supriadi. 2017. Aflatoxin of nutmeg in Indonesia and its control. Perspektif 16(2): 102-110.

Syaifudin, M., Jubaedah, D., Yonarta, D. & Hastuti, Z. 2019. DNA barcoding of snakeskin gourami Trichogaster pectoralis and blue gourami Trichogaster trichopterus based on cythocrome c oxidase subunit I (COI) gene. IOP Conference Series: Earth and Environmental Science 348(1): 012031.

Tayel, A.A., El-Tras, W., Moussa, S.H. & El-Agamy, M.A. 2013. Antifungal action of Pichia anomala against aflatoxigenic Aspergillus flavus and its application as a feed supplement. Society of Chemical Industry 93(13): 3259-3263.

Wang, Q.M., Jia, J.H. & Bai, F.Y. 2006. Pseudozyma hubeiensis sp. nov. and Pseudozyma shanxiensis sp. nov., novel ustilaginomycetous anamorphic yeast species from plant leaves. International Journal of Systematic and Evolutionary Microbiology 56(1): 289-293.

White, T.J., Bruns, T., Lee, S.J. & Taylor, J.W. 1990.  Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications, edited by Innis, M.A., Gelfand, D.H., Sninsky, J.J. & White, T.J. San Diego: Academic Press. pp. 315-322.

World Health Organization. 2018. Food Safety Digest. Aflatoxins. Department of Food Safety and Zoonoses Risk. WHO/NHM/FOS/RAM/18.1

Zajc, J., Gostinčar, C., Černoša, A. & Gunde-Cimerman, N. 2019. Stress-tolerant yeasts: Opportunistic pathogenicity versus biocontrol potential. Genes 10(1): 42.

Zang, W.J., Zhai, H.C., Lv, Y.Y., Cai, J.P., Jia, F., Wang, J.S. & Hu, Y.S. 2019. Expression of a wheat β-1,3-glucanase in Pichia pastoris and its inhibitory effect on fungi commonly associated with wheat kernel. Protein Expression and Purification 154: 134-139.

Zhang, X., Li, B., Zhang, Z., Chen, Y. & Tian, S. 2020. Antagonistic yeasts: A promising alternative to chemical fungicides for controlling postharvest decay of fruit. Journal of Fungi 6(3): 158.

 

*Pengarang untuk surat-menyurat; email: yshid@yahoo.co.uk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya